A New Transparent Film May Improve Electronics and Solar Cells

Business, technology and people concept - close up of woman holding and showing a transparent smartphone with icons set on the screen. (Image:  The University of Minnesota )
Business, technology and people concept - close up of woman holding and showing a transparent smartphone with icons set on the screen. (Image: The University of Minnesota )

A team of researchers, led by the University of Minnesota, have discovered a new nano-scale thin film material with the highest-ever conductivity in its class. The new material could lead to smaller, faster, and more powerful electronics, as well as more efficient solar cells. The discovery has been published in Nature Communications.

Researchers say that what makes this new material so unique is that it has a high conductivity, which helps electronics conduct more electricity and become more powerful. But the material also has a wide bandgap, which means light can easily pass through the material, making it optically transparent.

In most cases, materials with wide a bandgap usually have either low conductivity or poor transparency. Bharat Jalan, a University of Minnesota chemical engineering and materials science professor and the lead researcher on the study, said in an statement:

Currently, most of the transparent conductors in our electronics use a chemical element called indium. The price of indium has generally gone up over the last two decades, which has added to the cost of current display technology. As a result, there has been a tremendous effort to find alternative materials that work as well, or even better, than indium-based transparent conductors.

In this study, researchers found a solution. They developed a new transparent conducting thin film using a novel synthesis method, in which they grew a BaSnO3 thin film (a combination of barium, tin, and oxygen called barium stannate), but replaced the elemental tin source with a chemical precursor of tin.

The chemical precursor of tin has unique, radical properties that enhanced the chemical reactivity and greatly improved the metal oxide formation process. Both barium and tin are significantly cheaper than indium, and are abundantly available.

University of Minnesota chemical engineering and materials science graduate student Abhinav Prakash, the first author of the paper, said:

Jalan and Prakash said this new process allowed them to create this material with unprecedented control over thickness, composition, and defect concentration, and that this process should be highly suitable for a number of other material systems where the element is hard to oxidize. The new process is also reproducible and scalable.

They further added that it was the structurally superior quality with improved defect concentration that allowed them to discover high conductivity in the material.  They said the next step is to continue to reduce the defects at the atomic scale.

The research was funded by the National Science Foundation (NSF), Air Force Office of Scientific Research (AFOSR), and U.S. Department of Energy.

Provided by: The University of Minnesota

[Note: Materials may be edited for content and length.]

Like this article? Subscribe to our weekly email for more! 

Scientists Discover Lymphatic 'Scavenger' Brain Cells
Researchers Find Meteorites Were More Important in Shaping Our Planet