Hubble Captures Most Distant Star Ever Seen

Thanks to a rare cosmic alignment, astronomers have captured the most distant normal star ever observed, some 9 billion light years from Earth. (Image: NASA, ESA, and P. Kelly (University of Minnesota))
Thanks to a rare cosmic alignment, astronomers have captured the most distant normal star ever observed, some 9 billion light years from Earth. (Image: NASA, ESA, and P. Kelly (University of Minnesota))

While astronomers routinely study galaxies much farther away, they’re visible only because they glow with the brightness of billions of stars. And a supernova, often brighter than the galaxy in which it sits, also can be visible across the entire universe. Beyond a distance of about 100 million light years, however, the stars in these galaxies are impossible to make out individually.

But a phenomenon called gravitational lensing — the bending of light by massive galaxy clusters in the line of sight — can magnify the distant universe and make dim, far away objects visible.

Typically, lensing magnifies galaxies by up to 50 times, but in this case, the star was magnified more than 2,000 times. It was discovered in NASA Hubble Space Telescope images taken in late April of 2016 and as recently as April 2017.

Former UC Berkeley postdoctoral scholar and first author of the paper about the discovery  in the journal Nature Astronomy Patrick Kelly said:

A massive cluster (left) magnified a distant star more than 2,000 times, making it visible from Earth (lower right) even though it is 9 billion light years away, far too distant to be seen individually with current telescopes. It was not visible in 2011 (upper right). Credits: NASA, ESA, and P. Kelly (University of Minnesota)

A massive cluster (left) magnified a distant star more than 2,000 times, making it visible from Earth (lower right) even though it is 9 billion light years away, far too distant to be seen individually with current telescopes. It was not visible in 2011 (upper right). (Image: NASA, ESA, and P. Kelly (University of Minnesota))

The discovery of the star, which astronomers often refer to as Icarus rather than by its formal name, MACS J1149 Lensed Star 1 (LS1), kicks off a new technique for astronomers to study individual stars in galaxies formed during the earliest days of the universe.

These observations can provide a rare look at how stars evolve, especially the most luminous ones. Alex Filippenko, a professor of astronomy at UC Berkeley and one of many co-authors of the report, said:

The astronomy team also used Icarus to test and reject one theory of dark matter — that it consists of numerous primordial black holes lurking inside galaxy clusters — and to probe the make-up of normal matter and dark matter in the galaxy cluster.

Einstein ring

Kelly noticed the star while monitoring a supernova he had discovered in 2014 while using Hubble to peer through a gravitational lens in the constellation Leo. That supernova, dubbed SN Refsdal in honor of the late Norwegian astrophysicist Sjur Refsdal, a pioneer of gravitational lensing studies, was split into four images by the lens, a massive galaxy cluster called MACS J1149+2223, located about 5 billion light years from Earth.

Suspecting that Icarus might be more highly magnified than SN Refsdal, Kelly and his team analyzed the colors of the light coming from it and discovered it was a single star, a blue supergiant.

This B-type star is much larger, more massive, hotter, and possibly hundreds of thousands of times intrinsically brighter than our Sun, though still much too far away to see without the amplification of gravitational lensing.

By modeling the lens, they concluded that the tremendous apparent brightening of Icarus was probably caused by a unique effect of gravitational lensing. While an extended lens, like a galaxy cluster, can only magnify a background object up to 50 times, smaller objects can magnify much more.

A single star in a foreground lens, if precisely aligned with a background star, can magnify the background star thousands of times. In this case, a star about the size of our sun briefly passed directly through the line of sight between the distant star Icarus and Hubble, boosting its brightness more than 2,000 times.

In fact, if the alignment was perfect, that single star within the cluster turned the light from the distant star into an “Einstein ring,” a halo of light created when light from the distant star bends around all sides of the lensing star.

The ring is too small to discern from this distance, but the effect made the star easily visible by magnifying its apparent brightness. Kelly saw a second star in the Hubble image, which could either be a mirror image of Icarus, or a different star being gravitationally lensed, Filippenko explained that;

As for Icarus, the astronomers predict that it will be magnified many times over the next decade as cluster stars move around, perhaps increasing its brightness as much as 10,000 times.

Provided by: University of California — Berkeley [Note: Materials may be edited for content and length.]

Like this article? Subscribe to our weekly email for more!     

What's the Difference Between Electric and Plug-in Cars?