Iodine May Slow Ozone Layer Recovery

The Antarctic ozone hole.
NASA satellites have observed the Antarctic ozone hole since the late 1970s — before and after nations agreed to stop producing chemicals that destroy the ozone layer. Instrument: Aura — OMI. (Image: via NASA)

A new paper quantifying small levels of iodine in Earth’s stratosphere could help explain why some of the planet’s protective ozone layer isn’t healing as fast as expected. The paper posits a set of connections that link air pollution near the Earth’s surface to ozone destruction much higher in the atmosphere.

That higher-level ozone protects the planet’s surface from radiation that can cause skin cancer and damage crops. Lead author Theodore Koenig, a postdoctoral researcher at CIRES and the University of Colorado Boulder, referring to ozone in the lower part of the ozone layer around Earth’s tropics and temperate zones, said:

First quantitative detection of iodine in the atmosphere

Koenig’s paper, the first “quantitative detection” of iodine in the stratosphere, is published in the Proceedings of the National Academy of Sciences, with co-authors from CIRES, CU Boulder, and other institutions.

Chemicals once used widely in refrigeration, spray cans, and solvents can eat away at Earth’s ozone layer. After scientists discovered the stratospheric “ozone hole” in the 1980s, nations around the world signed the international Montreal Protocol agreement to protect the ozone layer, limiting the emission of ozone-depleting chemicals. Rainer Volkamer, a CIRES Fellow, CU Boulder professor of chemistry, and corresponding author of the new assessment, said:

For the new work, Volkamer and his colleagues poured through data from several recent atmospheric research campaigns involving National Science Foundation and NASA research aircraft, which included instruments that could pick up tiny amounts of iodine and other so-called halogens in the lower stratosphere during the daytime. Halogens, which also include chlorine and bromine, are key to ozone destruction. It’s been tricky to get data from this part of the atmosphere. Koenig said:

The amount of iodine they picked up in the lower stratosphere is tiny, similar to adding a few bottles of water to the Great Salt Lake. But iodine is extremely effective at destroying ozone, and generally speaking, the amount the scientists measured is enough to explain the level of ozone destruction in the lower stratosphere.

So where did the iodine come from? Strangely, it seems to be a result of air pollution down here at the surface of the planet, the new assessment reports. Ozone at Earth’s surface is a pollutant, one that is regulated in the United States and elsewhere because it can harm people’s lungs.

And when ozone pollution interacts chemically with the surface of oceans, it can “pull” naturally occurring iodine up into the atmosphere. Other studies have shown that in the lower atmosphere, iodine levels have roughly tripled in concentration since 1950. So some of that iodine is apparently making it up into the stratosphere, where it can trigger ozone depletion. Koenig said:

It will be important to study the hypothesis in greater detail, Koenig and his co-authors said. If ozone pollution at Earth’s surface increases, for example, could it trigger even more lower-stratosphere ozone layer destruction?

Co-author Pedro Campuzano-Jost, a CIRES research associate, said the success of the research project is partly due to the unique scope of NASA’s ATom (Atmospheric Tomography) mission, which flew a research aircraft across the globe, and NSF’s CONTRAST (Convective Transport of Active Species in the Tropics) mission, which detected iodine oxide radicals in the stratosphere, adding:

Volkamer and his colleagues hope to successfully pitch a new mission to study iodine chemistry in greater detail, to better understand the future of Earth’s protective ozone layer.

Provided by: University of Colorado at Boulder [Note: Materials may be edited for content and length.]

Follow us on TwitterFacebook, or Pinterest

  • Troy Oakes

    Troy was born and raised in Australia and has always wanted to know why and how things work, which led him to his love for science. He is a professional photographer and enjoys taking pictures of Australia's beautiful landscapes. He is also a professional storm chaser where he currently lives in Hervey Bay, Australia.

RECOMMENDATIONS FOR YOU